Code No : 19CST305/19ITT305

II B. Tech I Semester Regular Examinations, March - 2021 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common CSE and IT)

Time: 3 Hours Max. Marks: 60

Note: Answer **ONE** question from each unit (5 × 12 = 60 Marks)

UNIT-I

- 1. a) Define tautology and contradiction and verify that $7(P \leftrightarrows Q) \Leftrightarrow (P \lor Q) \land [6M]$ $7(P \land Q)$ is a tautology.
 - b) Verify the validity of the following argument by using rules of inference [6M] ``If there was a ball game, then travelling was difficult. If they arrived on time, then travelling was not difficult. They arrived on time. Therefore, there was no ball game".

(OR)

- 2. a) Define principal disjunctive normal form and find PDNF of $(P \land Q) \lor (7P \land [6M] R) \lor (Q \land R)$.
 - b) Verify the principal of duality for [6M] $7(P \land Q) \rightarrow (7P \lor (7P \lor Q)) \Leftrightarrow (7P \lor Q).$

UNIT-II

- 3. a) Show that the relation ``congruence modulo m'' over the set of positive [6M] integers is an equivalence relation.
 - b) Let A be the set of factors of a particular positive integer m and let \leq be the [6M] relation divide, i.e.

 $\leq = \{(x,y)/x \in A \land y \in A \land (x \text{ divides } y)\}$. Draw the Hasse diagrams for m = 12 and m = 45.

(OR)

- 4. a) Consider the relation $R = \{(a, a), (a, b), (a, c), (b, b), (b, d), (c, c), (c, d)\}$. [6M] Draw digraph for the relation R and represent its adjacency matrix.
 - b) In a lattice, show that [6M] $(a*b) \oplus (c*d) \le (a \oplus c) * (b \oplus d), \text{ for } a,b \in L$

UNIT-III

- 5. a) Prove that $\langle z_5, +_5 \rangle$ is an abelian group, where $^++_5$ is the addition modulo [6M] 5 of set of integers.
 - b) Let *G* be a set of all rational numbers and let $a*b = a+b+\frac{ab}{2}, \forall a,b, \in Q. \text{ Show that } < G, *> \text{ is a group.}$

6. a) State and prove division algorithm.

[6M]

b) Find the gcd(1000,625) and lcm(1000,625) using prime factorization and [6M] verify that

 $gcd(1000,625) \times lcm(1000,625) = 1000 \times 625.$

UNIT-IV

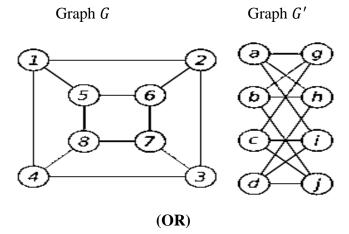
- 7. a) How many strings of six lower case letters of the english alphabet contain [6M]
 - (i) exactly one vowel,
 - (ii) exactly two vowels,
 - (iii) at least one vowel.
 - b) What is the coefficient of $x^{101}y^{99}$ in the expansion of $(2x 3y)^{200}$. [6M]

(OR)

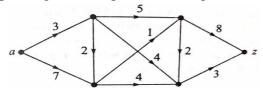
- 8. a) Solve the linear recurrence relation by using substitution method $a_n=[6M]$ $a_{n-1}+3^n,\,n\geq 1,\,a_0=1.$
 - b) Solve the recurrence relation by using the method of characteristic roots $a_n 7a_{n-1} + 12a_{n-2} = 0, n \ge 2, a_0 = 2 \text{ and } a_1 = 5$.

UNIT-V

- 9. a) Explain adjacency and incidence matrices with suitable examples. [6M]
 - b) When we say that two graphs G and G' are isomorphic. Check whether the [6M] following two graphs are isomorphic or not?



- 10. a) Write Prim's algorithm to find the minimal spanning tree. [6M]
 - b) Find the minimal spanning tree using Kruskal's algorithm for the given graph [6M]



* * * * *